

MECHANISM DESIGN FOR SOCIAL GOOD:

MAXIMISING THE UTILITY OF A LIMITED NUMBER OF COVID TESTS

FRANCISCO MARMOLEJO-COSSIO

OVERVIEW OF TALK

- An Introduction to Mechanism Design for Social Good (MD4SG)
- Test and Contain
- Current Status and Next Steps
- The Future of MD4SG
- Q&A

WHAT IS MD4SG?

Mechanism Design for Social Good (MD4SG) is a **multi-institutional initiative** using techniques from algorithms, optimization, and mechanism design, along with insights from other disciplines, to **improve access to opportunity** for historically underserved and disadvantaged communities.

WHAT MAKES MD4SG DISTINCTIVE?

- **Multi-disciplinary** collaborations, with focus on algorithms, optimization, and mechanism design, for problem diagnosis and solution design
- **Multi-stakeholder** (and inter-institutional, global, impacted community) engagement for defining and tackling problems
- Common focus on improving access to opportunity for historically underserved and disadvantaged communities
- Bridging Research & Practice: An End-to-End approach
- Values of Diversity, Equity, and Inclusion

WORKING GROUP COLLABORATIONS

Working groups are the core of MD4SG and a backbone of our community:

- Bring together groups of researchers and practitioners
- Explore an area together: 200+ participants from over 20 countries
- Arrive at a shared research and/implementation agenda/purpose

WORKING GROUP COLLABORATIONS

TEST & CONTAIN

A COLLABORATION BETWEEN

MAIN PROBLEM

- Accurate and extensive testing of population required to combat Covid-19
- Resources can be extremely limited:
 - Tests
 - Trained personnel
 - Lab time

How do we maximise the benefit of these limited resources?

TESTING OBJECTIVES

- Minimise propagation of virus
 - i.e. prioritise those susceptible or likely to spread
 - Protecting vulnerable segments of the population
- Minimise impact of unecessary self-isolation
 - Essential workers
 - Those without the economic means to self-isolate
 - Easing out of lockdown

GROUP TESTING

- Research has shown that Covid-19 tests are sensitive enough to pool samples together
 - If a single individual is sick, test is positive
 - If all individuals are healthy, test is negative
- Has potential to drastically reduce the number of tests needed to tackle objectives from before
- Our partners at the Vasudevan Laboratory have pioneered a novel methodology to perform group testing while preserving test sensitivity

EXAMPLE: DORFMAN'S 2-STAGE PROTOCOL

- Population of size n, with k infected individuals
- Test on groups of size $\sqrt{n/k}$
- For positive groups, individually test patients in them
- With knowledge of k, requires at most $2\sqrt{nk}$ tests
- Group could be household

BEYOND DORFMAN

What if we don't have enough test for Dorfman?

- Rather than starting with a population and trying to figure out the minimal number of tests required, we start with a testing budget and aim to maximise the benefit of a testing allocation
- If we're ok with not knowing everyone's diagnosis on an individual level, we can reduce the number of tests required
- Surprisingly simple mechanisms can yield improvements

UNIFORM GROUP TESTING

- The simplest way of group testing
- Suppose we have a population of size *n*
- The testing protocol has two parameters:
 - *t*: the number of tests allocated to population
 - g: the granularity of tests (i.e. group sizes used)
- Test t disjoint groups of size g

LOW GRANULARITY TESTING

- We assume a testing budget: T
- Population of *n* individuals
- Belong to C categories
- Each category, C_i has the following characteristics:
 - p_i : baseline probability of infection
 - d_i : connectivity / exposure
 - γ_i : cost of self-isolation
 - n_i : number of individuals in the class
 - s_i : whether the segment is in self-isolation or not

LOW GRANULARITY TESTING

- Consider testing strategies that consist of disjoint uniform group testing strategies for each category
- A feasible testing protocol consists of:
 - t_i : number of tests allocated to C_i
 - g_i : granularity of uniform group testing within C_i
- Constraints:
 - $g_i t_i \leq n_i$
 - $g_i \leq G = 10$
 - $\sum t_i \leq T$

CONTAGION MODEL AND SELF-ISOLATION POLICY

- We assume a single step of contagion
- Initially individuals of C_i are infected with iid probability p_i
- Subsequently, the population is tested according to feasible variable granularity testing strategy
- Self-isolation policy assumptions:
 - If individual is in positive group test, then forced to self-isolate
 - If individual is negative test, or untested, no change in behaviour

OBJECTIVES

- Minimise propagation of virus
 - i.e. prioritise those susceptible or likely to spread
 - In practice, this means large p_i and d_i values
- Minimise impact of unecessary self-isolation
 - i.e. prioritise those with large γ_i values
 - Essential workers
 - Those without the economic means to self-isolate

THE OPTIMISATION PROBLEM

- $r_i = n_i g_i t_i$, the untested individuals in C_i
- $\beta \in [0,1]$ is a relative weight of each portion of the objective

$$\begin{split} \min_{\substack{g,\ell}\\g_{i}\in C} & \sum_{i=1}^{C}\ell_{i}\theta_{i}(g_{i})\\ \text{subject to} & \ell_{i}\leq \frac{n_{i}}{g_{i}}\\ & \sum_{i=1}^{C}\ell_{i}\leq T\\ & g_{i}\leq G\\ & g_{i},\ell_{i}\in \mathbb{N} \end{split}$$

TEST ALLOCATION ALGORITHM

- The objective from before is separable in terms of the allocation of tests to each segment
- If we fix granularities we obtain a mixed integer linear program (MILP)
- We can solve the MILP via a top-down allocation

Algorithm 1 Optimal Segmented Uniform Group Testing
Require:
1: Granularity Range: $R_G \subseteq [G]^C$
Iterating over Granularities:
2: $OPT \leftarrow \infty$
3: for $g \in R_G$ do
4: $\ell_i \leftarrow 0 \text{ for } i \in [C]$
5: Compute σ , an ordering of C_i with respect to increasing $\theta_i(g_i)$ values
6: $T_r \leftarrow T$
7: $i \leftarrow 1$
8: while $T_r > 0$ do
9: $\ell_{\sigma(i)} \leftarrow \min\{T_r, \lfloor \frac{n_{\sigma(i)}}{g_{\sigma(i)}} \rfloor\}$
10: $T_r \leftarrow T_r - \ell_{\sigma(i)}$
11: $i \leftarrow i+1$
12: if $\sum_{i=1}^{C} \ell_i \theta_i(g_i) < OPT$ then
13: $OPT \leftarrow \sum_{i=1}^{C} \ell_i \theta_i(g_i)$
14: $g^*, \ell^* \leftarrow g, \ell$
15:
16: return g^*, ℓ^*, OPT

SINGLE VS. MULTIPLE OBJECTIVES

- A key parameter in the model is the cost of self-isolation: γ_i
- Eliciting such parameters may be difficult for a policy-maker
- In this case, we measure a specific testing allocation's performance by multiple metrics rather than the single objective from before:
 - The number of critical COVID cases prevented
 - For each segment, the number of unnecessary self-isolations imposed
- Tradeoffs are inevitable, but we can eliminate testing strategies that are inherently inferior to others (i.e. Pareto dominated)
- In this setting, our framework presents policymakers with families of strategies that exemplify these tradeoffs

What's the best strategy?

CURRENT PRACTICES

- If conscious of health workforce, allocate 20 tests
- For all others, test if individual is already showing symptoms
- Unfortunately these tests are not very informative
- There is an inherent bias in results
- Many cases go un-noticed

UNIFORM GROUP TEST ON WHOLE POPULATION

- Choose a random assignment of 500 groups of size 10 from village
- Place these individuals in group for testing
- Benefits:
 - Covers 50% of the population
 - Can estimate prevalence of virus
- Drawbacks:
 - May unnecessarily self-isolate healthcare workers
 - May not necessarily test an infected marketplace worker

VARIABLE GROUP TESTING

- We consider the case were cost of self-isolation for marketplace workers is high
- Possible testing strategy:
 - 20 tests for individually testing healthcare workers
 - 96 tests of group size 5 (480 individuals tested) for marketplace workers
 - 384 tests of group size 10 for randomly selected groups of townsfolk (3840 individuals tested)

VARIABLE GROUP TESTING

- If cost of self-isolation for marketplace workers is low, can bring the granularity down in their segment while still covering their numbers.
- This frees up tests for the townsfolk
- Possible testing strategy:
 - 20 tests for individually testing healthcare workers
 - 48 tests of group size 10 (480 individuals tested) for marketplace workers
 - 432 tests of group size 10 for randomly selected groups of townsfolk (4320 individuals tested)

BREAKING THE GROUP TESTING LIMIT

- Individuals with highly correlated infection rates do not need to be tested separately
- Household members fall in this category, and a single test from an individual in the household should suffice to determine whether all or none are infected
- If the household is the basic unit, pooled tests aggregate over households
- In our village example, if the average household is of 3 members, then 317 pooled household tests suffice to cover entire townsfolk segment of population

• Ran a network SIR model over a heterogeneous population

- Ran a network SIR model over a heterogeneous population
- Key parameters:
 - 100,000 individuals in population
 - Baseline infection of 0.1%
 - 20% key workers
 - 16 tests per day
 - 200 days of infection

- We compared the following testing strategies:
 - Baseline (i.e. testing those showing severe symptoms only)
 - Testing groups of size 10 at random
 - Segmented uniform testing:
 - All tests focused on highest connectivity segment
 - Key workers are tested at granularity 1
 - Others are tested at granularity 10
- Same containment policy used throughout

- Total number of infected individuals at any given day at most 10% of population
- Random sampling reduces the peak by $(6.5 \pm 6)\%$
- Optimised testing reduces the peak by $(19 \pm 5.5)\%$
- Optimised testing also results in (45 ± 3.8) % reduction in number of individuals self-isolating during the peak
- Quarantined key workers at the peak reduced by $(93 \pm 1.2)\%$

EXITING LOCKDOWN

- Up to now we have focused on a scenario where a population is not in lockdown
- In that setting, testing can be interpreted as "finding the infected"
- When a population is in lockdown, the objective is dual to this
- We must instead focus on "finding those healthy"
- Group testing once again provides non-trivial optimizations with respect to this objective

A TOY EXAMPLE

Employee Type	Quantity	Essential	Baseline Infection Probability
Owner	I	Ι	N/A
Managers	4	2	7%
Technicians	10	2	10%
Assistants	5	0	.5%

Group sizes of at most 15, and a Budget of 6 tests

What is the best strategy?

FINDING HEALTHY INDIVIDUALS

- Suppose that there are *n* populations segments
- Each has a probability of infection (health) given by p_i (q_i)
- We encode a group test of this population with an n-vector
 - \vec{a} , where a_i is the number of individuals in segment i
 - Clearly sum $a_i \leq 10$
- We let H(a) be the expected number of healthy individuals for this group test
- $H(\vec{a}) = (\sum_{i=1}^{n} a_i) (\prod_{i=1}^{n} q_i^{a_i})$

FINDING HEALTHY INDIVIDUALS

Employee Type	Quantity	Essential	Baseline Infection Probability
Owner	I	Ι	N/A
Managers	4	2	7%
Technicians	10	2	10%
Assistants	5	0	.5%

- Test all essential regularly, this leaves one test
- All in one group provides 5.44 healthy individuals in expectation
- 2 Managers, 3 technicians and 5 assistants provides 6.15 healthy individuals in expectation
- Over two testing periods, this is one more person on average!

POTENTIAL EXTENSIONS

- Hybrid optimization
- Staggered lockdown, irrespective of group characteristics
- Bayesian analysis of biomarker data

CURRENT STATUS

- Vasudevan group testing protocol has been validated at IPICYT
- Data collection pipeline:
 - Centinela de la Salud
 - ITESM student information
- Prototype for ITESM "Regreso Consciente" is imminent
- Nascent collaboration with UASLP medical school
 - Simple objective: opening primary school education in disadvantaged municipalities in SLP
 - Senior government official involvement
 - In MD4SG spirit, the most important aspect of the project is engaging directly with the community [parents].

MD4SG EXEMPLIFIED

- Perfect example of how MD4SG works in motion
- Test and Contain has been a collaboration between:
 - Researchers at the University of Oxford and Mexico (IPICYT, ITESM)
 - Policymakers from the state of San Luis Potosi, Mexico
 - Academic administrators at ITESM
- Funded by ACM Special Interest group on Economics and Computation (SIGEcom), and Facebook through "Global Challenges in Economics and Computation"

A GLOBAL ORGANISATION

Diverse and experienced leadership

Rediet Abebe

Irene Lo
Stanford
University

Ana Andreea-Stoica

Wanyi Li

Stanford University

Francisco Marmolejo

Participants

9 Working Groups

Workshops, colloquiums, conference & more

THANK YOU!

SPECIAL THANKS: EDWIN LOCK JAKOB JONNERBY HECTOR GUZMAN SALVADOR RUIZ-CORREA

RUBEN LOPEZ-REVILLA

