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Abstract11

Proof-of-stake blockchain protocols have emerged as a compelling paradigm for organizing distributed12

ledger systems. In proof-of-stake (PoS), a subset of stakeholders participate in validating a growing13

ledger of transactions. For the safety and liveness of the underlying system, it is desirable for14

the set of validators to include multiple independent entities as well as represent a non-negligible15

percentage of the total stake issued. In this paper, we study a secondary form of participation16

in the transaction validation process which takes the form of stake delegation, whereby an agent17

delegates their stake to an active validator who acts as a stake pool operator. We study payment18

schemes that reward agents as a function of their collective actions regarding stake pool operation19

and delegation. Such payment schemes serve as a mechanism to incentivize participation in the20

validation process while maintaining decentralization. We observe natural trade-offs between these21

objectives and the total expenditure required to run the relevant payment schemes. Ultimately we22

provide a family of payment schemes which can strike different balances between these competing23

objectives at equilibrium in a Bayesian game theoretic framework.24
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1 Introduction29

Proof-of-stake (PoS) blockchain protocols have emerged as a compelling paradigm for organiz-30

ing distributed ledger systems. Unlike Proof-of-work (PoW), where computational resources31

are expended for the opportunity to append transactions to a growing ledger, PoS protocols32

designate the potential to update the ledger proportionally to the stake one has within the33

system. Common to both protocols is the fact that larger and more varied participation in34

the transaction validation process provides the system with increased security and liveness.35

Although participating as a validator in a PoS protocol is computationally less intensive36

than doing so in a PoW protocol, it still demands some effort, e.g that the validator is37

consistently online and maintains dedicated hardware and software, thus it is still not the38

case that every agent in the system decides to, or is even able to, do so. Given this, a39

compelling intermediate form of participation in the transaction validation process is that40

of stake delegation. In PoS systems with stake delegation, validators can be considered41

1 Part of this work was conducted while Stouka was a research associate at the Edinburgh Blockchain
Technology Lab
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stake pool operators (SPOs), who activate pools controlling their own as well as delegated42

stake of others. Agents who prefer not to engage as validators have the opportunity to43

delegate their stake to active pools and gain rewards. In this paradigm, pools are chosen44

to update the ledger proportional to the combination of their “pledged stake” (i.e., stake45

they contribute) and externally delegated stake (stake contributed to them by others); in46

this way, delegation can be seen as a vetting of how frequently operators should be selected47

to participate. Furthermore, delegation is not borne out of good will alone, since the system48

provides additional payments to all agents as a function of the profile of pool operators and49

delegators in the system. The space of payment mechanisms provides for an interesting50

problem in balancing three objectives: increasing participation in the validation protocol51

of the system (via delegation), maintaining a decentralized validation creation process (in52

spite of added delegation), and balancing the budget of rewards to be given to operators and53

delegators.54

1.1 Related Work and Motivation55

The works that are the most related to this paper are [2] and [9]. Brunjes et al. [2] introduces56

a reward sharing scheme for stake pools that incentivizes decentralization. This scheme was57

deployed on the Cardano mainnet.2 In that work, decentralization in the system is captured58

by enforcing an equilibrium where k pools of equal size are formed and also by preventing59

a single entity with very low stake from controlling the majority of the pools. Later, the60

authors in [9] analyzed the Nash dynamics of this mechanism and the decentralization that61

it offers from a different perspective. In more detail, they use a variation of the Nakamoto62

coefficient [11] that takes into account not only the number of pools in the system, but also63

the stake of the operators who run the pools (a notion of skin in the game for a coalition of64

pools that may control validation in the system). In addition, there are many other works65

that study the decentralization of blockchain protocols from different perspectives including66

[1],[11],[7],[6], [4], [12], [8], [5], [9]. In our case, the decentralization metric that we present is67

based on the approach used in [9].68

Both [2] and [9] use in their analysis a framework for incentives called non-myopic69

utility that tries to predict how delegators will choose a pool when the system stabilizes at70

equilibrium. This seems essential because a key component of their reward mechanism is71

the margin of rewards an SPO keeps for themselves before further sharing rewards to its72

delegators.73

Motivated by the above, we present a variation of reward schemes of [2] in which the74

margin of the operators is implicitly set by the system. This is a methodology that has been75

adopted in Ethereum liquid staking systems such as Rocketpool.3 With this in hand, we76

can use a myopic utility analysis to better reflect the fact that an average user may not77

be willing to make assumptions regarding where the system will stabilize. In addition, we78

study tradeoffs between three competing objectives for the system: decentralization, overall79

participation, and the expenditure of the reward sharing scheme used. Furthermore, we80

study this performance in the presence of (i) “lazy” users who are willing to delegate their81

stake only if the reward they earn is lower bounded by an amount ε, and (ii) users who can82

use their stake for external sources and earn ε.83

2 https://cardano.org
3 https://rocketpool.net/
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1.2 Overview84

We consider a setting where a finite number of agents owns a publicly known amount of85

stake in a decentralized system. Agents are at a high level given three options:86

They can create a stake pool, whereby they can be delegated stake from other players.87

Such agents are called pool operators. To be a pool operator, the agent must pledge88

whatever stake they own and, in addition, incur a private pool operating cost of c > 0.89

They can delegate their stake to pools that are in operation. Such agents are called90

delegators.91

They can decide to abstain from participating in the protocol and remain idle, earning92

baseline utility ε > 0.93

It is important to note that this setting assumes that each unit of stake in the system94

can be attributed to a single owner (this is inherent in the fact that our model permits each95

agent to take only one of the 3 high-level actions above). In other words, we do not model96

the scenario where agents can create multiple identities (i.e. perform sybil attacks), or where97

they can pool resources outside of the system and coordinate as what seems to be a single98

agent in the system.99

We stress that the scope of this paper is to show that there are important trade-offs100

(Decentralization, Participation and System Expenditure) that system designers need to101

consider in the setting where agents are identified in a system (for example via KYC). Indeed,102

we believe that broadening the model to permit this agent behaviour is an important future103

area of research.104

Participation105

We are interested in systems that encourage increased participation in the overall validation106

process. To prevent agents from abstaining from the protocol (and hence participating), they107

must at least be able to delegate in such a way as to earn more than ε, their baseline utility108

for remaining idle.109

Rewards and Incentives110

The aforementioned structure alone does not provide incentives to drive agents’ actions. To111

create such incentives, we consider reward schemes whereby pool operators and delegators112

are compensated as a function of which pools are active and whom delegators choose to113

delegate to. As we will see in the following section, this creates a well-defined family of114

one-shot games that are played between all agents in the system, and we study the equilibria115

that result as a function of the reward scheme implemented.116

Informal Design Objectives117

Our main objective is to create reward schemes that optimise for three distinct objectives:118

Increasing participation in the system.119

Increasing Decentralization, i.e. preventing stake from overly accumulating (via delegation)120

in the hands of few pool operators.121

Minimizing the budget necessary to achieve the above.122
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1.3 Roadmap of our Results123

We consider the setting in which stakeholders of a PoS blockchain can either operate pools124

(receive delegation), delegate their stake, or abstain from the protocol, where each of these125

actions provides a certain reward from the system. Section 2 begins by introducing the notion126

of a delegation game, which is a general framework for encapsulating strategic considerations127

between stakeholders in this setting. At the end of Section 2, we introduce the notion128

of a uniform reward delegation game, which is a refinement of general delegation games129

by which all delegators in the system (roughly) earn a uniform reward per unit of stake130

that they delegate. Within the class of uniform delegation games we further hone our131

focus on proper delegation games which we define in such a way to exemplify relevant132

characteristics of existing reward sharing schemes deployed in practice. In Section 3 we133

provide sufficient conditions for pure Nash equilibria in proper delegation games. Section 4134

introduces a Bayesian framework to proper delegation games and explores novel solution135

concepts intricately tied to ex post pure Nash equilibria. In Section 5 we introduce the136

main metrics by which we compare the equilibria of the Bayesian proper delegation game:137

participation, decentralization and system expenditure. Section 6 provides details on the138

computational methods used to evaluate the performance of payment schemes in proper139

delegation games at equilibrium, along with experimental results. Finally, Section 7 provides140

a conceptual overview of the results obtained and provides future directions of work.141

2 The Delegation Game142

We now formalize the general family of games which govern agent decisions regarding whether143

to create a pool or delegate their stake. We consider n > 0 players, each with a publicly144

known stake, si > 0. Additionally, we assume that any agent who chooses to operate a pool145

and participate actively incurs a fixed cost of ci > 0. Finally, we assume that each player has146

a fixed utility for non participation in delegation, which we denote by εi > 0. Such a utility147

can encompass the fact that an agent may find participating in stake delegation prohibitively148

complicated, or that they prefer using their stake in other ways (such as other governance or149

DeFi protocols, for example).150

Player Strategies151

For each player, i ∈ [n], let Di denote the set of functions di : [n] \ {i} → R+ such152

that
∑
j∈[n]\{i} di(j) = si. The action space of the i-th player corresponds to the set153

Ai = {aI} ∪ {aSPO} ∪ Di. We further denote the space of all joint strategy profiles by154

A =
∏
iAi. A joint strategy profile of the game is a vector p = (pi)ni=1 ∈ A, where pi ∈ Ai155

denotes the action taken by the i-th agent. Furthermore, for a fixed agent i ∈ [n], we let A−i156

denote the action space of all players other than i, such that p−i ∈ A−i denotes a specific157

collection of strategies for all players in [n] \ {i}, and p = (pi,p−i) ∈ A denotes a strategy158

profile that makes specific reference to the action pi ∈ Ai played by the i-th player. There159

are 3 relevant cases for the values pi can take and hence the actions that the i-th player can160

take:161

pi = aI represents non-participation in delegation for the i-th agent. We say that the162

agent is idle.163

pi = aSPO occurs when the i-th player chooses to operate their pool. To do so, they164

pledge their stake, si, to the pool and incur a pool operation cost of ci. We say the agent165

is a stake pool operator (SPO).166
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pi = di ∈ Di occurs when the i-th player chooses to delegate their stake, si, to different167

pools operated by other agents. We call di the player’s delegation profile. For each168

j ∈ [n] \ {i}, the player i delegates di(j) stake to a pool operated by the j-th agent. We169

say that the agent is a delegator.170

I Definition 1 (Active-Inactive Pool). A pool j will be called active in the joint strategy profile171

p ∈ A if pj = aSPO. That is, if player j has pledged their stake, sj, to operate their pool. If172

this is not the case, we say that the pool j is inactive.173

Rewards174

For each agent, i ∈ [n], we let Ri : A → R be their delegation game reward function. If175

p ∈ A is a joint strategy profile of all agents, Ri(p) denotes the reward obtained by the i-th176

agent. We impose the following constraints on Ri:177

If pi = aI , then Ri(p) = εi.178

If pi = di ∈ Di, then the reward, Ri(di,p−i) can be further decomposed as the sum of179

n− 1 delegation reward functions: Ri(di,p−i) =
∑
j∈[n]\{i}Ri,j(di(j),p−i) which satisfy180

two constraints:181

Ri,j(0,p−i) = 0 for all p−i ∈ A−i. That is, no rewards can be earned by abstaining182

from delegating to a given pool.183

If pool j is not active (that is, pj 6= aSPO), then Ri,j(di(j),p−i) = 0. More succinctly,184

if a player delegates stake to an inactive pool, they receive no reward.185

Utilities186

For each i ∈ [n], we let ui : A → R, denote the i-th player’s utility, given by ui(p) ∈ R for187

a joint strategy p ∈ A. In our setting, we define utilities in terms of the aforementioned188

reward function:189

ui(p)) =


εi if pi = aI

Ri(p))− ci if pi = aSPO

Ri(p)) if pi ∈ Di

(1)190

I Definition 2 (The Delegation Game). Suppose that we have n agents with publicly known191

stakes denoted by s = (si)ni=1, privately known pool operation costs c = (ci)ni=1 and privately192

known idle utilities ε = (εi)ni=1. In addition, suppose that R = (Ri)ni=1 is a family of reward193

functions Ri : A → R+. We let G(R, (s, c, ε)) be the corresponding game with induced utilities194

u = (ui)ni=1 from above. This game is called the “Delegation Game” for s, c,ε, and R.195

2.1 Games with Uniform Delegation Rewards196

Given the large class of delegation games described above, we focus on a natural class of197

delegation games similar to what is used on the Cardano blockchain [2]. Cardano rewards198

have the following relevant high-level characteristics:199

1. Each pool j receives a total amount of rewards according to a pool reward function that200

takes as input the stake of the pool operator and the stake delegated to the pool.201

2. The pool operator may keep an amount of the pool rewards. They do so by picking a202

margin of pool rewards to keep.203

3. The remaining pool rewards (called Pool Member Rewards) are proportionally shared.204

amongst the pool operator and delegates to the pool.205
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The subclass of delegation games we study in this paper will incorporate similar pool206

reward functions, hence to proceed, we define the following important terms that result from207

a joint strategy profile p ∈ A:208

βj : the external stake delegated to pool j under p. This is given by βj =
∑
i:pi∈Di di(j).209

λj : the operator pledge of pool j. This is given by λj = sj , when pj = aPO; otherwise it210

is λj = 0.211

σj : the total stake of a pool j. This is given by λj + βj .212

I Definition 3 (Pool Reward Function). A pool reward function is given by ρ : (R+)2 → R+
213

that takes as input the pledged stake of its pool leader, λj , and the external stake delegated to214

the pool, βj and outputs the rewards that correspond to pool j, given by ρ(λj , βj).215

As detailed in [2], the Cardano pool reward function has the further property that rewards216

are capped (so that pools stop earning surplus rewards once they reach a certain size), and217

the rewards themselves can be decomposed into a specific algebraic form which we call218

separable:219

I Definition 4 (Capped Separable Pool Reward Function). Let τ > 0 and a, b : R+ → R+ and
define ρ : (R+)2 → R+ as follows:

ρ(λ, β) = a(λ′) + b(λ′)β′,

where λ′ = min{τ, λ} and β′ = min{τ − λ′, β}. We say that ρ : (R+)2 → R+ is a capped pool220

reward function with a cap given by τ . In addition, we say that ρ is separable into a and b,221

where a is the pool’s pledge reward component and b is the pool’s external delegation reward222

component.223

Upon close inspection, Delegation games, as per Definition 2, already exemplify an224

important point of departmure from Cardano reward sharing schemes. Namely, our setting225

has a simpler action space for agents amounting to mostly the high-level choice of: being226

an SPO, being a delegator, and being idle. In Cardano, rewards have a more complicated227

action space whereby beyond the choice to become an SPO, agents can also pick the margin228

of rewards they wish to keep as SPOs. In [2], the authors study the parametric family229

of pool reward functions used in Cardano to show that when players are non-myopic, one230

can modulate the number of pools, k, which are formed at equilibrium. An important231

characteristic of these equilibria though is the fact that pool operators choose a margin232

such that delegators are indifferent amongst the k active pools in terms of the delegation233

reward they obtain from them (i.e. the proportional rewards after margins are taken by234

pool operators). Rather than letting agents reach such an outcome at equilibrium, we study235

delegation games with the very property that delegators earn the same per-unit reward236

mostly irrespective of the pool to which they delegate. In order to do so, we introduce the237

notion of delegator rewards:238

I Definition 5. A delegation reward function is given by r : A× (R+)n → R+ which takes239

as input the publicly known joint strategy p = (pi)ni=1 and stake distribution s = (si)ni=1 to240

output a fixed reward per unit of delegated stake given by r(p, s).241

We will shortly precisely define delegation games with uniform delegation rewards, but242

at a high level these games have reward functions that automatically enforce the fact that243

for a given strategy profile, delegators will receive r(p, s) rewards per unit of delegation.244

Continuing with the comparison with Cardano, at equilibrium, it is not the case that all pools245

have equal per-unit delegation rewards, but rather the k pools which offer the best per-unit246
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delegation rewards to delegators which are, in turn, those pools with the most profitable247

combination of pledge and cost). It can very well be the case that a suboptimal pool remain248

in operation, albeit offering lower per-unit rewards to potential delegators. In this spirit,249

we define the notion of pool feasibility, which serves as a way to determine which pools are250

suboptimal. Suboptimality will mean that the cumulative earnings of all agents involved in251

a pool (including the SPO) is less than what they would earn as delegators according to the252

delegation reward function r.253

I Definition 6 (Pool feasibility). For a given joint strategy profile p, we call the i-th pool254

feasible if pi = aSPO and ρ(λi, βi) ≥ σir(p, s).255

Now we have everything in hand to define the notion of a delegation game with uniform256

delegate rewards. We specify the rewards that each agent earns in the game.257

I Definition 7 (Uniform Delegation Agent Rewards). Suppose that we have n agents with258

stake distribution s, participation costs c, and idle utilities ε. Furthermore, suppose that259

p ∈ A is a joint strategy profile such that pi = di ∈ Di. If we let r = r(p, s), then the260

components of the reward function for the i-th agent are:261

Ri,j(di(j),p−i) =


r · di(j) if pool j is active and feasible
di(j)
σj
· ρ(λj , βj) if pool j is active and not feasible

0 if pool j is not active
(2)262

With this in hand, we can fully define the reward function for the i-th agent under arbitrary263

actions as follows:264

Ri(p) =


εi if pi = aI

ρ(λi, βi)− r · βi if pi = aSPO and pool i is feasible
λi
σi
· ρ(λi, βi) if pi = aSPO and pool i not feasible∑
j∈[n]\{i}Ri,j(di(j),p−i) if pi = di ∈ Di

(3)265

If a delegation game G has uniform delegation rewards, we say it is a uniform delegation266

reward game.267

2.1.1 Narrowing Down Delegation Rewards268

The final component we need to specify in order to delve into delegation game equilibria269

is the delegation reward function that we use. In [2] the authors show that at equilibrium,270

delegator rewards are essentially specified by the most competitive agent who misses out on271

becoming an SPO. Essentially, if one ranks pools according to potential profits at saturation,272

then there are equilibria where the top k pools are active and have margins such that the273

cut of rewards which go to delegators for each of these pools equals the potential profit of274

the potential (k + 1)-th pool. We recall that k is a parameter of the reward sharing scheme275

that is intended to modulate the number of pools in the system. Moreover, this phenomenon276

intuitively makes sense, for the top k agents are essentially as aggressive as possible in setting277

their margins without falling behind the (k+ 1)-th pool in desirability to potential delegators.278

In this vein, we focus on a delegation reward function that is specified according to the279

“most competitive” delegator, with the property that once such a delegator is identified,280

all less competitive delegators will be content with their choice in delegating. In order to281

proceed, we introduce new notation and terminology.282
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I Definition 8. For a given pool reward function, ρ, we let α : (R+)2 → R+ be such that:

α(s, c) = ρ(s, 0)− c
s

.

In other words, α(s, c) is the rewards per unit of stake that an individual with stake s and283

pool operation cost c obtains for opening a pool without external delegation (a solo pool). We284

call α(s, c) the threat of deviation of a delegator with stake s and pool operation cost c.285

For a given joint strategy profile, p, we would ideally want to set delegation rewards to286

be the maximum threat of deviation among delegators, as this would achieve our desired287

goal of ensuring that all delegators do not have an incentive to deviate from delegating288

into becoming solo pools. The problem with this, though, is that the threat of deviation289

fundamentally depends on each delegate’s private cost of pool operation. For this reason, we290

suppose that there is public knowledge regarding bounds on pool operation costs, so that291

0 ≤ cmin ≤ ci ≤ cmax for any i ∈ [n]. With this in hand, we define the max-delegate rewards:292

IDefinition 9 (Max-delegate r). For a given pool reward function, ρ, we let rM : A×(R+)n →
R+ be such that:

rM (p, s) = max
i:pi∈Di

α(si, cmin)

If {i ∈ [n] | pi ∈ Di} = ∅, then we let rM (p, s) = 0293

Since α is a decreasing function in c, it follows that for a given joint strategy profile, p,294

every delegator will not increase their utility by becoming a solo pool operators under rM .295

In what follows, we will consider pool reward functions ρ with the natural property that α is296

monotonically increasing in s as well (i.e. per-unit solo pool rewards are increasing in SPO297

pledge). In this case, we can express the max-delegate reward function in a more simple and298

useful fashion by making use of the following:299

I Definition 10. Suppose that G is a delegation game and that we consider a joint strategy300

profile p. We let s∗ = maxi:pi∈Di si and call this quantity the pivotal delegation stake of p.301

If pi ∈ Di and si = s∗, then we also say that the player is a pivotal delegate in p.302

If the pool reward function, ρ, is such that α increases monotonically in s, then it follows303

that rM (p, s) = α(s∗, cmin).304

Putting Everything Together305

Going forward, we focus on uniform delegation games with max-delegate rewards such that306

per-unit solo pool delegation (α) is monotonically increasing in pledge. We give this class of307

games a specific name as the main focus of this paper:308

I Definition 11 (Proper delegation game). Suppose that G is a uniform delegation game such309

that the following hold:310

The pool reward function, ρ is such that per-unit solo SPO rewards, α(s, c), are monoton-311

ically increasing for s ∈ [0, smax], where smax = max{si}.312

ρ is capped and separable with smax < τ .313

Delegation rewards are given by rM , the max-delegate reward function.314

Then we say that ρ is a proper reward function and that G is a proper delegation game. When315

we wish to be more specific regarding a given game, we use the notation G(ρ, τ, (s, c, ε)) to316

specify the reward function and cap used, as well as the attributes of all players in the game.317
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3 Equilibria in Proper Delegation Games318

In the previous section, we rigorously defined the class of proper delegation games which we319

focus on in this paper. This section provides sufficient conditions for a joint strategy profile320

to be a pure Nash equilibrium.321

3.1 Sufficient Conditions for Pure Nash Equilibrium (PNE)322

We use the shorthand r = rM (p, s) ∈ R+ to refer to the per-unit reward for delegating to323

a feasible pool and we begin by providing multiple structural results related to the best324

responses agents may have in a proper delegation game.325

3.1.1 Structural Results regarding Best Responses326

We begin by showing that infeasible pools are always suboptimal for both SPOs and delegators.327

I Lemma 12 (Feasible pool structural lemma). Suppose that G(ρ, τ, (s, c, ε)) is a proper328

delegation game and all agents are playing the joint strategy profile p where the i-th player is329

an SPO (pi = aSPO) for an infeasible pool with pledge λi = si and external delegation βi ≥ 0.330

The following hold:331

Delegators to the infeasible pool obtain strictly more utility by delegating to feasible pools.332

The SPO earns strictly more utility by using their pledge to delegate to feasible pools.333

Proof. The infeasibility of the pool implies that ρ(λi, βi) < rσi = r · (λi + βi) by definition,
where we recall that σi = λi + βi is the total stake of the pool (including pledge and external
delegation). Suppose that a delegator has delegated x ≤ βi stake to the pool. The infeasibility
of the pool also implies that said delegator’s rewards amount to

x

σi
ρ(λi, βi) <

x

σi
rσi = rx.

If the SPO becomes a delegator to a feasible pool, they will earn r′x, where r′ ≥ r (since334

they could change the per-unit delegation if they are a pivotal delegate). This concludes the335

proof of the first statement.336

As for the second statement, the infeasibility of the pool means that the SPO earns the
following rewards:

λi
σi
ρ(λi, βi) <

λi
σi
rσi = rλi.

The SPO stands to earn rλi rewards if they instead delegate their stake used as a pool pledge337

to a feasible pool, thus proving the second statement. J338

We now prove lemmas regarding the best responses of agents who are idle, delegators,339

and SPOs, respectively.340

I Lemma 13 (Idle best response). Consider a proper delegation game G(ρ, τ, (s, c, ε)) and341

a joint strategy profile p = (aI ,p−i) such that i-th player is idle. The i-th player’s best342

response to p is either remaining idle or delegating to a feasible pool.343

Proof. This is a straightforward extension of definitions. We simply show that the deviation344

where the i-th player becomes an SPO is weakly dominated by the deviation where the i-th345

agent becomes a delegator. The deviation where the agent becomes an SPO is unilateral,346

hence the pool they create forcibly lacks external delegation. As such, their solo pool utility347

is given by α(si, ci) · si. On the other hand, let p′ = (p′i,p−i) be the deviation where the i-th348
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player delegates to feasible pools, resulting in per-unit delegation rewards r′. By definition,349

r′ ≥ α(si, cmin), as it is the maximum value of α(sj , cmin) among the agents who delegate,350

which includes the i-th agent. Since the i-th player delegates to feasible pools in p′, it351

follows that their utility is given by r′si in the deviation. We have the following strings of352

inequalities:353

α(si, ci) · si ≤ α(si, cmin) · si
≤ r′si (4)354

where we have additionally made use of the fact that α is decreasing in its second argument.355

The claim follows. J356

I Lemma 14. Suppose that G(ρ, τ, (s, c, ε)) is a proper delegation game. For any joint357

strategy profile p, delegates to feasible pools cannot benefit from deviating to becoming SPOs.358

Proof. This is an easy consequence of the fact that α is monotonically increasing in pledge
and monotonically decreasing in pool operation cost. We recall that s∗ is the pivotal delegate
stake for p. Suppose pi ∈ Di, where the i-th player with stake si and pool operation cost
ci delegates to a feasible pool in p. Per-unit rewards for this delegate are r = α(s∗, cmin)
where si ≤ s∗. Monotonicity gives:

α(si, ci) ≤ α(s∗, ci) ≤ α(s∗, cmin) = r

and the per-unit reward the delegate can earn from becoming a solo SPO is in fact α(si, ci).359

J360

In what follows, we consider an SPO with pledge, pool operation cost, and idle utility
given by (λ, c, ε). Moreover, we continue to let r be per-unit rewards for delegating to feasible
pools. We call the following quantity the “Gap” of the given SPO:

G(λ, c, ε, r) = max{ε+ c− a(λ), [r − α(λ, cmin)]+ · λ+ (c− cmin)} > 0,

where we use the notational shorthand [x]+ = max{x, 0}. Furthermore, when the context is361

clear, we simply use G to refer to the gap of an SPO.362

I Lemma 15. Suppose that an SPO has s stake, pool operation cost c, and idle utility ε.
Additionally suppose that they operate a pool with pledge λ = s and external delegation β.
The SPO cannot benefit from unilaterally deviating from pool operation (by either becoming
idle, becoming a delegator or opening a new pool) if and only if:

b(λ)β′ − rβ ≥ G(λ, c, r, ε) > 0

Proof. We start by providing algebraic conditions for the SPO to prefer operating the pool
to becoming idle. The utility for operating a pool is given by uP = a(λ) + b(λ)β′ − rβ − c,
whereas the utility for remaining idle is given by uI = ε. It is thus clear that uP ≥ uI if and
only if:

b(λ)β′ − rβ ≥ ε+ c− a(λ)

Now we provide algebraic conditions for an SPO to prefer operating the pool to becoming
a delegator or a solo pool. To begin, we show that becoming a delegator is always a preferable
deviation to shedding external delegation and becoming a solo pool. By becoming a delegator,
the per-unit reward of the agent is at least α(λ, cmin) by definition of rM . If the agent
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becomes a solo pool operator, however, their per-unit reward is given by α(λ, c) ≤ α(λ, cmin).
With this in hand, we only consider deviations consisting of becoming a delegator going
forward. In what follows we will show that an SPO prefers running their pool over becoming
a delegator if and only if:

b(λ)β′ − rβ ≥ [r − α(λ, cmin)]+ · λ+ (c− cmin).

Once we prove this constraint the lemma follows, as the gap is the larger value of both of363

these constraints on b(λ)β′ − rβ.364

There are two relevant cases when considering a deviating SPO depending on whether365

λ ≤ s∗ where we recall that s∗ is the pivotal stake of p.366

Case 1: λ ≤ s∗.367

The utility the SPO has from operating the pool as is is given by:

uP = a(λ) + b(λ)β′ − rβ − c

Whereas the utility for delegating is given by:

uD = rλ = α(s∗, cmin)λ =
(
a(s∗)− cmin

s∗

)
λ,

where we have used the fact that λ ≤ s∗ in the fact that the same r is the per-unit delegation368

reward after deviating. The SPO prefers the status quo if and only if uP ≥ uD. If we369

re-arrange said inequality, we obtain the desired equivalent condition:370

uP ≥ uD

a(λ) + b(λ)β′ − rβ − c ≥ rλ
b(λ)β′ − rβ ≥ rλ− a(λ) + c

b(λ)β′ − rβ ≥ rλ− (a(λ)− cmin) + c− cmin
b(λ)β′ − rβ ≥ rλ− α(λ, cmin)λ+ c− cmin
b(λ)β′ − rβ ≥ (r − α(λ, cmin)) · λ+ c− cmin
b(λ)β′ − rβ ≥ [r − α(λ, cmin)]+ · λ+ (c− cmin) (5)371

In the final line we use the fact that λ ≤ s∗ implies that α(λ, cmin) ≤ r due to the definition372

of r and the monotonicity of α in its first argument.373

Case 2: λ > s∗374

The utility the SPO obtains from operating the pool as is is given by:

uP = a(λ) + b(λ)β′ − rβ − c

Whereas the utility for delegating is given by:

uD = rλ = α(λ, cmin)λ = a(λ)− cmin,

where we have used the fact that λ > s∗ in the fact that the same r = α(λ, cmin) is the375

per-unit delegation reward after deviating. The SPO prefers the status quo if and only if376
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uP ≥ uD. If we re-arrange said inequality, we obtain the desired equivalent condition:377

uP ≥ uD

a(λ) + b(λ)β′ − rβ − c ≥ a(λ)− cmin
b(λ)β′ − rβ ≥ c− cmin
b(λ)β′ − rβ ≥ [r − α(λ, cmin)]+ · λ+ (c− cmin) (6)378

In the final line, we used the fact that λ > s∗ implies that α(λ, cmin) = r.379

J380

3.1.2 Pool Deficit and Capacity381

With the previous lemma in hand, we precisely characterize at what values of external382

delegation an SPO prefers to maintain their pool (rather than becoming a delegator or383

abandoning their given external delegation for a solo pool). To do so, we define the following384

important quantities:385

I Definition 16 (Pool Deficit/Capacity). Consider a proper pool delegation game given by386

G(ρ, τ, (s, c, ε)) where the pool reward function is given by ρ(λ, β) = a(λ) + b(λ)β′. Let387

p be a joint strategy profile of G such that per unit delegation reward is given by r and388

such that the i-th player is an SPO with pledge λi < τ and pool operation cost ci. We let389

β−i = β−(λi, ci, εi, r) and β+
i = β+(λi, ci, εi, r) denote the deficit and capacity, respectively,390

of the pool run by the i-th player as an SPO. The quantities are defined as follows:391

β−(λi, ci, εi, r) =
{
G(λi,ci,εi,r)
b(λi)−r if (b(λi)− r)(τ − λi) ≥ G(λi, ci, εi, r)
∞ otherwise

(7)392

β+(λi, ci, εi, r) =
{
b(λi)(τ−λi)−G(λi,ci,εi,r)

r if (b(λi)− r)(τ − λi) ≥ G(λi, ci, εi, r)
−∞ otherwise

(8)393

We allow β−i and β+
i to take infinite values to represent scenarios where no amount of394

external delegation can prevent an SPO from deviating from stake pool operation. The395

following lemma formalizes how pool deficit and capacity serve as lower and upper bounds396

to the external delegation an SPO can bear while being content as an SPO.397

I Lemma 17. Suppose that the i-th player is an SPO with pledge, λi, and pool operation
cost, ci, and that they are running a feasible pool under the joint strategy profile p with
external delegation βi. Furthermore, suppose that per-unit delegation rewards in p are given
by r. The i-th player prefers operating their pool to becoming idle or becoming a delegator if
and only if:

0 < β−i ≤ βi ≤ β
+
i

Proof. The result follows from unpacking b(λi)β′i − rβi as a piecewise linear expression (due
to the piecewise linear nature of β′i resulting from the pool cap τ) in Lemma 15 which we
recall says that the SPO cannot benefit from deviating from operating their pool if the
following holds:

b(λi)β′i − rβi ≥ G(λi, ci, εi, r) > 0,
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where β′i = min{βi, τ − λi}. For the sake of this proof, we let h(βi) = b(λi)β′i − rβi and398

express it piecewise:399

h(βi) =
{

(b(λi)− r)βi if βi ≤ τ − λi
b(λi)(τ − λi)− rβi if βi > τ − λi

(9)400

Considering the gap, G, as a value which is independent of βi, the condition we seek for an
SPO to not deviate is thus:

h(βi) ≥ G > 0

We recall that b(λi) ≥ 0 for all values of λi (SPOs never pay the system to open a pool),401

hence if (b(λi)− r) < 0 < G, then h(βi) is in fact monotonically decreasing in βi. Thus, there402

will be no values of βi such that h(βi) > G, which from Lemma 15, implies the SPO will prefer403

to deviate from operating the pool. Moreover, we notice that h(τ−λi) = (b(λi)−r)(τ−λi) < 0,404

hence the expressions for deficit and capacity of the pool give us β−i = ∞ and β+
i = −∞,405

which also reflects the fact that there exist no value of βi such that β−i ≤ βi ≤ β
+
i .406

When (b(λi)− r) > 0, it follows that the piecewise linear h(βi) is strictly increasing for407

βi ∈ [0, τ −λi] and strictly decreasing for βi > τ −λi. As a consequence, the global maximum408

of h(βi) is at βi = (τ −λi). If h(τ −λi) < G, then h(βi) ≤ h(τ −λi) < G for all βi, hence no409

amount of external delegation can prevent the SPO from deviating. Moreover, the expression410

for deficit and capacity are such that once more β−i =∞ and β+
i = −∞, which also reflect411

the fact that there exist no value of βi such that β−i ≤ βi ≤ β
+
i .412

Finally, if h(τ − λi) > G, there do exist βi values such that h(βi) > G which prevent the413

SPO from deviating to delegation or solo pool operation. The expression for β−i and β+
i414

have been chosen such that β−i ≤ β+
i and h(β−i ) = h(β+

i ) = G, where 0 < β−i due to the415

fact that G > 0. Given the piecewise linear nature of h, it follows that for βi ∈ [β−i , β
+
i ] we416

have h(βi) > G as desired.417

I Observation 18. Notice that β−i ≤ βi ≤ β
+
i also implies that the pool opened by the i-th418

player as an SPO is feasible. If this were not the case, then by Lemma 12 the SPO would419

prefer delegation, which is not possible due to Lemma 17.420

J421

3.1.3 Putting Everything Together422

We summarize the collection of results from this section as a theorem that characterizes423

useful sufficient conditions for a joint strategy profile, p, to be a pure Nash equilibrium in a424

proper delegation game.425

I Theorem 19. Suppose that G(ρ, τ, (s, c, ε)) is a proper delegation game. Consider a joint426

strategy profile p that results in per-unit delegation rewards, r. The following are sufficient427

conditions for p to be a pure Nash equilibrium:428

Delegators only delegate to feasible pools.429

If the i-th agent is not idle, they earn at least εi utility.430

If the i-th agent is idle, their delegation utility is at most εi.431

If the i-th agent is an SPO with pledge λi = si < τ and external delegation βi, then432

β−i ≤ βi ≤ β
+
i .433
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4 The Bayesian Setting434

In a proper delegation game, we let the type of the i-th player consist of their stake, pool435

operation cost and idle utility: (si, ci, εi). In a Bayesian framework we independently draw436

player types from a common known prior distribution X and subsequently have them play a437

proper delegation game.438

I Definition 20 (Bayesian Proper Delegation Game). A Bayesian proper delegation game439

requires four inputs:440

A proper reward function: ρ441

A pool cap: τ442

A type distribution: X443

The number of agents to be drawn from the type distribution: n > 0444

For such a game, player types are first drawn independently via (s, c, ε) ∼ Xn, and they445

subsequently play the proper delegation game G(ρ, τ, (s, c, ε)). We use the notation G(ρ, τ,X , n)446

to denote a specific Bayesian proper delegation game.447

In Bayesian games one typically studies ex ante player strategies that consist of mappings448

from player types to actions taken. Agents in a proper delegation games however have a449

rich (infinite in fact) family of actions at their disposal. Moreover, as mentioned in the450

introduction, we are ultimately interested in the high level decision taken by an agent whether451

to be an SPO, a delegator or idle. For this reason, we introduce the notion of a partial ex452

ante strategy which will be an important object of study of our paper.453

IDefinition 21 (Partial Ex Ante Strategy). A partial ex ante strategy for a Bayesian delegation454

game is a function f : R3 → {0, 1} which dictates which players become SPOs. Under f , a455

player with type (s, c, ε) is an SPO if and only if f(s, c, ε) = 1.456

The reason we call such ex-ante strategies partial is due to the fact that after drawing457

player types, there are multiple pure strategy profiles of the ex post proper delegation game458

which are consistent with f . For a given draw of player types, (s, c, ε), we let Af (s, c, ε) denote459

the set of pure strategy profiles of the ex post proper delegation game, G(ρ, τ, (s, c, ε)), that460

are consistent with f . In other words, p ∈ Af (s, c, ε) when pi = aSPO ⇐⇒ f(si, ci, εi) = 1.461

We are ultimately interested in strategies that can give rise to PNE ex post, which are462

rigorously defined below:463

I Definition 22 (Ex post SPO stable). Suppose that f is a partial ex ante strategy for a464

Bayesian proper delegation game G(ρ, τ,X , n). We say that f is ex post SPO stable for the465

draw (s, c, ε) ∼ Xn if there exists a joint strategy profile p ∈ Af (s, c, ε) which is a PNE.466

The main result of this section provides useful sufficient conditions for a partial ex ante467

strategy, f , to be ex post SPO stable for a given draw of player types. Before delving into468

the main theorem though, we define some relevant quantities.469

I Definition 23 (Total Ex Post Stable Delegation). Suppose that f is a partial ex ante
strategy for a Bayesian proper delegation game G(ρ, τ,X , n) with player types given by
(s, c, ε) ∼ Xn. Assuming that s∗ = max{i ∈ [n] | f(si, ci, εi) = 0 and α(si, cmin) ≥ εi/si}
and r = α(s∗, cmin),4 we denote the total ex post stable delegation by Del(f) and define it by:

Del(f) =
n∑
i=1

si(1− f(si, ci, ε))I(rsi ≥ εi)

4 If {i ∈ [n] | α(si, cmin) ≥ εi/si} = ∅, we let r = 0.
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where I(·) is an indicator function.470

I Definition 24 (Total Ex Post Pool Deficit/Capacity). Suppose that f is a partial ex ante
strategy for a Bayesian proper delegation game G(ρ, τ,X , n) with player types given by
(s, c, ε) ∼ Xn. Assuming that s∗ = max{i ∈ [n] | f(si, ci, εi) = 0 and α(si, cmin) ≥ εi/si}
and r = α(s∗, cmin), we denote the total ex post pool deficit/capacity by Def(f) and Cap(f)
respectively, and define them by:

Def(f) =
n∑
i=1

β−i (si, ci, εi, r)f(si, ci, εi)

Cap(f) =
n∑
i=1

β−i (si, ci, εi, r)f(si, ci, εi)

With the notation above in hand, we can finally prove the main result of this section:471

I Theorem 25. Suppose that f is a partial ex ante strategy for a Bayesian proper delegation
game G(ρ, τ,X , n) with player types given by (s, c, ε) ∼ Xn. The following is a sufficient
condition for f to be ex post SPO stable:

0 < Def(f) ≤ Del(f) ≤ Cap(f)

Proof. Suppose that f satisfies the desired inequalities for a given draw of player types472

(s, c, ε) ∼ Xn. We begin with corner cases, the first being when f(si, ci, εi) = 0 for all players.473

In this case Def(f) = Del(f) = Cap(f) = 0, which satisfies the inequalities of the theorem474

statement. In addition, such a scenario implies that there are no active pools, hence any475

form of delegation forcibly earns no utility. This means that the only joint strategy profile476

p ∈ Af (s, c, ε) which is a PNE is that where all players are idle, hence f is still ex post SPO477

stable for the draw of player types and the statement holds. Going forward, we assume that478

there is at least one player with f(si, ci) = 1.479

The second corner case occurs when for every player such that f(si, ci) = 0 we have480

α(si, cmin) < εi/si. Consider any joint strategy profile p ∈ Af (s, c, ε) where the set of481

delegating agents is non-empty. In this case, there is a pivotal delegate s∗ who necessarily482

earns α(s∗, cmin)s∗, which from assumption must be less than ε∗, their idle utility. It follows483

that p cannot be an ex post PNE. As a consequence, any joint strategy profile p ∈ Af (s, c, ε)484

which is a PNE must have no delegators, which means that Del(f) = 0 and if the i-th player485

is an SPO, it must be the case that βi = 0. From Lemma 17 we know that if the i-th agent486

is an SPO, then their deficit is given by β−i > 0, which cannot be satisfied by βi = 0, as a487

consequence the i-th player prefers to deviate from being an SPO and hence p is not a PNE.488

This shows that there can be no p ∈ Af (s, c, ε) which is a PNE for this corner case, and this489

is consistent with the theorem statement as Del(f) = 0 yet Def(f) > 0.490

With the second corner case taken care of, we can make the further assumption that there491

exists some player such that f(si, ci, εi) = 0 and α(si, cmin) ≥ εi/si. Before continuing, let492

s∗ = max{i ∈ [n] | f(si, ci, εi) = 0 and α(si, cmin) ≥ εi/si} and r = α(s∗, cmin). Moreover,493

let A = {i ∈ [n] | f(si, ci, εi) = 0 and rsi < εi} and B = {i ∈ [n] | f(si, ci, εi) = 0} \ A. We494

will show that there exists a PNE, p ∈ Af (s, c, ε), such that if i ∈ A, the i-th agent is idle495

(pi = aI) and if i ∈ B, the i-th agent is a delegator (pi ∈ Di). In such a strategy profile,496

it must be the case that s∗ is the pivotal stake and r is the per-unit delegation rewards to497

feasible pools.498

For now let us assume that all delegation is given to feasible pools (we will show this is499

possible shortly). If the i-th player is a delegator, then i ∈ B, in which case the agent earns500

rsi ≥ εi, hence they weakly prefer being a delegator to being idle.501
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If the i-th player is idle, we distinguish two potential cases. The first case is when si < s∗,502

in which case if they agent deviates to becoming a delegator, they stand to earn rsi. However,503

the fact that the agent is idle implies that i ∈ B, in which case rsi < εi. The second case is504

when si > s∗, in which case the construction of s∗ implies that α(si, cmin) < εi/si. If such a505

player deviates to becoming a delegator, doing so changes per-unit delegation rewards to506

α(si, cmin) in which case they earn α(si, cmin)si < εi utility for doing so, which is less than507

what they obtain from being idle.508

To finalize the proof, we notice that if p ∈ Af (s, c, ε) is such that for i ∈ A, the i-th509

agent is idle (pi = aI) and for i ∈ B, the i-th agent is a delegator (pi ∈ Di), it must be510

the case that the total stake to be delegated is precisely Del(f). In addition, Def(f) and511

Cap(f) also represent the sum of all pool deficits and capacities, respectively, hence the fact512

that Def(f) ≤ Del(f) ≤ Cap(f) implies that there exists a way to delegate to pools that513

respects individual pool deficits and capacities. The resulting p ∈ Af (s, c, ε) from delegating514

this way is in turn a PNE from Theorem 19 as desired.515

J516

If f is ex post SPO stable for the draw (s, c, ε) ∼ Xn there are generally multiple joint517

strategy profiles p ∈ Af (s, c, ε) which give rise to PNE. In the following section we provide a518

means of distinguishing the performance different PNE which arise. We quantify performance519

of a given joint strategy profile p via 3 key metrics: Decentralization, Participation and520

System Expenditure.521

5 Decentralisation, Participation and Expenditure Objectives522

5.1 Decentralization Objective523

Recall that a specific strategy profile, p ∈ A, consists of relevant information regarding524

which agents have activated pools, which agents have delegated to said active pools, and525

which agents forego participating in the pool creation/delegation scheme. From the strategy526

profile, we can extrapolate the public pool profile, which consists of the information available527

to a third-party observer of the system (who may not know which agent specifically owns528

stake used to pledge or delegate). We encode the public profile with two vectors, (λ,β), of529

variable dimension 1 ≤ k ≤ n which in turn represents the number of pools that are active530

in a public profile. For a given pool j ∈ [k], the terms λj and βj represent how much was531

pledged to open the pool and how much external stake is delegated to the pool respectively.532

In addition, σj = λj +βj is the size of the j-th pool, so that σ = λ + β is a vector containing533

the sizes of all pools created in a strategy profile. With this notation on hand we can define534

the following objectives that measure the relative performance of different joinst strategy535

profiles in a proper delegation game:536

5.2 Participation Objective537

In order to evaluate the participation of a system we compute the sum of the absolute538

stake that is either delegated or pledged (a quantity which we call the “active stake”). A539

system designer seeks to maximize participation.540

I Definition 26 (Participation Objective). Let p ∈ A be a joint strategy profile in the proper
delegation game, G(ρ, τ, (s, c, ε)), that gives rise to the public pool profile (λ,β) with k pools
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of sizes given by σ = λ + β. We define the participation objective OP as follows:

OP (p) =
k∑
j=1

(λj + βj) =
k∑
j=1

σj

5.3 Expenditure Objective541

We evaluate the cost that is incurred by the system in paying all agents for their participation542

in the system as design objective. Unlike participation, a system designer ideally seeks to543

minimize expenditure.544

I Definition 27 (Expenditure Objective). Suppose that p ∈ A is a joint strategy profile for the
proper delegation game, G(ρ, τ, (s, c, ε)). We define the expenditure objective, OE as follows:

OE(p) =
n∑
i=1

Ri(p)

5.4 Decentralization Objective545

Finally we define a family of decentralization objectives OD` , with relevant parameter ` ≥ 0.546

For a fixed parameter, `, OD` takes as input a joint strategy profile p ∈ A in the proper547

delegation game, G(ρ, τ, (s, c, ε)) and outputs the smallest collective pledge amongst coalitions548

of pools of aggregate size exceeding an ` ·OP (p). The value of ` will typically take values of549

relevance to resilience guarantees in Byzantine consensus protocols (i.e. 1/3, 1/2, 2/3). The550

following is a more precise definition.551

I Definition 28 (Decentralization Objective). Suppose that p ∈ A is a joint strategy profile552

in the proper delegation game, G(ρ, τ, (s, c, ε)), with a public pool profile given by (λ,β) over553

k pools. For a given ` ≥ 0, we let P`(p) denote the set of pool coalitions with aggregate stake554

exceeding ` ·OP (p):555

P`(p) = {S ⊆ [k] :
∑
i∈S

σi ≥ ` ·OP (p)}.

With this in hand, we define the decentralization objective OD` (p) as follows:

OD` (p) = min
S∈P`(λ,β)

∑
i∈S

λi.

Notice that most of our definitions do not preclude us from considering a scenario in which556

all agents forego participating in the protocol. In this case, k = 0, and λ,β = {0}, the unique557

zero-dimensional vector. Furthermore P`(λ,β) = ∅ as [0] = ∅, and the decentralization558

objective of this strategy profile is 0.559

5.5 Multi-objective Optimization560

In all that follows of this paper, we will be interested in measuring the performance of payment561

schemes for delegation games over the the three objectives mentioned above. As mentioned562

previously, a system designer will seek to maximize participation, minimize expenditure and563

maximize decentralization. Simultaneously optimizing for each of these objectives is generally564

not possible, and hence we use a framework inspired by multi-objective optimization to565

understand tradeoffs between all three.566
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6 Computational Methods and Results567

Our main computational approach focuses on conceptualizing the performance of a partial568

ex ante strategy, f , for a given Bayesian proper delegation game G(ρ, τ,X , n). To do so, we569

measure the performance of f for a given draw of player types, (s, c, ε) ∼ Xn, in terms of570

the three objectives from Section 5. At a high level, our approach proceeds in two stages:571

1. First we establish whether f satisfies the sufficient conditions set forth in Theorem 25 for572

being ex post SPO stable.573

2. If f is ex post SPO stable, then all p ∈ Af (s, c, ε) which are PNE exhibit the same574

participation breakdown (the amount of stake which is dedicated to being idle, delegating575

or pledging as an SPO respectively), and hence have equal values for OP . This is576

not the case for OE and OD` , hence to study decentralization and expenditure, we577

construct a comprehensive set of ex post PNE, p1, . . . ,pm ∈ P ∈ Af (s, c, ε) with578

different decentralization and expenditure performance to represent the potential spread579

of performance that can be achieved ex post for f .580

6.1 Representative Ex Post PNE581

In what follows we outline our methodology for constructing a representative set of PNE582

from A(s, c, ε) for understanding the potential decentralization and expenditure achieved by583

a given partial ex ante strategy, f , which is ex post SPO stable for a given draw of agent584

types.585

We consider a Bayesian proper delegation game, G(ρ, τ,X , n) and a partial ex ante strategy,586

f . Suppose that f is ex post SPO stable for a given draw of player types, (s, c, ε), where at587

least one agent is an SPO. In what follows we outline our methodology for constructing a588

representative set of PNE from A(s, c, ε) for understanding the potential decentralization589

and expenditure achieved under f ex post.590

We let λmin ≤ λmax represent the smallest and largest pledges made by SPOs under f .
More specifically,

λmin = min
i:f(si,ci,εi)=1

si ≤ max
i:f(si,ci,εi)=1

si = λmax.

We also let m ∈ N be a resolution parameter that dictates the number of representative PNE
from Af (s, c, ε) constructed. From these quantities, we construct an m-dimensional vector
of reference pledges, λ̄ = (λ̄j)mj=1, where the j-th reference pledge is defined as follows:

λ̄j = λmin + (j − 1)(λmax − λmin)
m− 1

With λ̄j in hand, we can construct the j-th representative PNE from Af (s, c, ε) which591

we denote by pj . As in Theorem 25, we can fix the high level actions of agents between592

remaining idle to ensure ex post SPO stability. To do so, we once more let s∗ = max{i ∈593

[n] | f(si, ci, εi) = 0 and α(si, ci) ≥ εi/si} and we let r = α(s∗, cmin). We now consider an594

arbitrary i-th player in G(ρ, τ, (s, c, ε)):595

If f(si, ci, εi) = 0 and rsi < εi, then pji = aI596

If f(si, ci, εi) = 0 and rsi ≥ εi, then pji ∈ Di597

If f(si, ci, εi) = 1, then pji = aSPO598

All that remains to specify pj is deciding where delegation goes to, for which we make599

use of the reference pledge, λ̄j . We do so by computing a delegation vector β = (βi)ni=1600

first satisfying the deficit of all pools (using Def(f) ≤ Del(f) of the available delegation).601
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Afterwards, we greedily fill pools with pledge closest to λ̄j up to capacity using the remaining602

Del(f)−Def(f) delegation at our disposal. The details of the greedy delegation allocation603

are provided in Algorithm 1. Given the target greedy delegation allocation, β, we simply604

let pj be any PNE which is consistent with the target delegation (since they all achieve the605

same expenditure and decentralization objectives).606

Algorithm 1 Greedy Delegation Allocation

1: procedure GreedyDelegation(λ̄j ,β−,β+, Del(f))
2: β ← β− . Satisfying pool deficit
3: X ← Del(f)−

∑n
i=1 βi . Remaining delegation

4: A← {i ∈ [n] | βi < β+
i }

5: j∗ ← argmini∈A|λi − λ̄j | . Ties broken lexicographically in argmin
6: while X 6= 0 do
7: βj∗ ← βj∗ + min{X, (β+

j∗ − βj∗)}
8: X ← Del(f)−

∑n
i=1 βi

9: A← {i ∈ [n] | βi < β+
i }

10: j∗ ← argmini∈A|λi − λ̄j |
11: end while
12: return β

13: end procedure

Computing Participation and Expenditure Objectives607

Computing OP and OE for a given p ∈ A in a proper delegation game, G(ρ, τ, (s, c, ε)), is
straightforward. In order to do so, we extrapolate the relevant public pool profile, (λ,β)
for p, where λ = (λj)kj=1 and β = (βj)kj=1 represent the pledge and external delegation
that arise for the k ≥ 0 active pools. As per Definitions 26 and 27, the participation and
expenditure objectives are given by:

OP (p) =
k∑
j=1

(λj + βj)

OE(p) =
n∑
i=1

Ri(p)

In the scenario where all pools from p are feasible, it is the case that the utility an SPO
earns is given by ρ(λj , βj)− rβj − c > 0. Moreover, the total rewards given to delgators to
the pool is rβj , hence when summing rewards given to all agents in the system, it suffices to
compute the sum of rewards over pools, hence we get

OE(p) =
k∑
j=1

ρ(λj , βj)

Approximating the Decentralization Objective608

To wrap up our computational methods, we focus on the problem of computing the decent-609

ralization objective, OD` , for a given joint strategy p ∈ A in a given proper delegation game,610

G(ρ, τ, (s, c, ε)). As per Definition 28, the value of OD` (p) is the smallest cumulative stake of611
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any coalition of pools with size that exceeds `T . We can express this computational problem612

in terms of the public pool profile (λ,β) which arises from p. To do so, we let λ = (λj)kj=1,613

β = (βj)kj=1 and σ = λ + β represent the pledge, external delegation and total size of each614

of the k ≥ 0 active pools that arise from p. With this in hand, the value of OD` (p) is given615

by the optimization problem in Equation 10.616

min
x1,...xk

k∑
j=1

λjxj

s.t.
k∑
j=1

σjxj ≥ `T

xj ∈ {0, 1}

(10)617

This optimization problem is NP-hard as it is precisely an instance of the {0, 1}-min618

knapsack problem, [3]. In order to approximate OD` , we use the typical dynamic programming619

FPTAS as per [13].620

6.2 Relevant Modeling Choices and Parameters621

In this section we provide details regarding further modeling choices and parameter settings622

we make before delving into experimental results.623

Threshold Partial Ex Ante Strategies624

Our framework for partial ex ante strategies is very general. For a given Bayesian proper625

delegation game, G(ρ, τ,X , n), a partial ex ante strategy can be an arbitrary function from626

player types to whether they act as an SPO or not. In practice we expect larger players (with627

more stake) to be SPOs for multiple reasons (increased interest in the proper functioning of628

the underlying blockchain, potentially less frictions to operate as SPO, etc.). For this reason,629

we consider a simple class of partial ex ante strategies with agents operating as SPOs only if630

they exceed a stake threshold.631

I Definition 29 (Threshold Partial Ex Ante Strategy). We let f tα : R2 → {0, 1} denote a
threshold partial ex ante strategy with threshold θ ≥ 0. The strategy is specified by:

f tθ(s, c, ε) = 1 ⇐⇒ s ≥ θ

Bounded Pareto Distribution for Stake632

As is common in economic literature, we can assume that stake distributions obey a power633

law [10]. For this reason, we consider type distributions such that the marginal distribution634

of stake obeys a bounded Pareto distribution:635

I Definition 30 (Truncated Pareto Distribution). We say that Z is a Pareto distribution with636

minimum value L > 0, maximum value H > L and inequality parameter γ if it has a pdf637

given by:638

η(x) =


(

γLγ

1−(L/H)γ

)
x−γ−1 x ∈ [L,H]

0 x /∈ [L,H]
639

We write s ∼ Pareto(L,H, γ) when an agent’s stake is distributed according to a bounded640

Pareto distribution.641
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In order to acheive marginal Pareto distributions on player stake, we consider type642

distributions X which result as product distributions over player stake, cost and idle utility643

respectively. Furthermore, without loss of generality, we normalize the value of stake with644

respect to the lower bound L, so we can let L = 1. In more detail, we consider type645

distributions parametrized by:646

H, γ: the upper bound and exponent in Pareto PDF for stake distribution.647

cmin, cmax: the minimal and maximal values of pool operation cost.648

εmin, εmax: the minimal and maximal values of idle utility.649

The type distribution with these parameters is denoted X (H, γ, cmin, cmax, εmin, εmax),650

though when evident from context, we simply use X as before. In order to sample from651

the distribution, (s, c, ε) ∼ X (H, γ, cmin, cmax, εmin, εmax), we independently sample each652

component s ∼ Pareto(1, H, γ), c ∼ U [cmin, cmax] and ε ∼ U [εmin, εmax].653

6.3 Experimental Results654

We provide some results for a proper Bayesian delegation game which demonstrate the655

flexibility of our approach in studying tradeoffs struck by payment schemes in proper656

delegation games. In what follows, we assume a baseline parameter setting upon which657

we modulate key parameters to show their impact on participation, decentralization, and658

expenditure objectives.659

Baseline Parameter Settings660

We begin by providing details regarding the family of ρ functions we explore in our experiments.661

Given we are modeling proper delegation games as per Definition 11, we are considering662

separable pool reward functions such that ρ(λ, β) = a(λ) + b(λ)β′, where β′ = min{τ − λ, β}663

for the cap τ , which we will specify shortly. In our experiments, we model a(λ) and b(λ) as664

polynomials of varying degree and positive coefficients (which is in fact similar to the formula665

for Cardano reward sharing schemes [2]). Our baseline formulas are given by a(λ) = b(λ) = λ.666

As an aside, we note that if a(λ) =
∑m
i=1 ziλ

i, where zi > 0 for all i, then it follows that667

α(λ, c) = a(λ)−c
λ = (

∑m
i=1 ziλ

i−1)− c
λ , which is in fact monotonically increasing in λ, as is668

required for a proper delegation game.669

For the marginal distribution of player stakes, we use a truncated Pareto distribution with670

lower bound L = 1, upper bound H = 100, and inequality parameter γ = 1.5. For SPO costs,671

we let lower and upper bounds for cost be cmin = 0.4 and cmax = 0.6 and for idle utilities,672

we simply assume that all players have the same ε = 0.01. Finally, given the marginal stake673

distribution, we let τ = 200 be the pool cap used for ρ. We begin by considering the threshold674

partial ex ante strategy f tθ with θ = 30. Moreoever, we consider a Bayesian proper delegation675

game with n = 1000 agents drawn from the type distribution described above. In addition,676

we create m = 100 representative ex post PNE as per Algorithm 1 whenever f tθ is ex post677

SPO stable, and use ` = 0.5 for the decentralization objective Od` . Finally, we repeat this678

process for N = 500 independent draws from Xn.679

Results from this parameteric setting are presented in Figures 1 and 2. With regards to680

participation, the empirical frequency of ex post stability for f tθ was 496 of the N = 500 draws681

of player types. In Figure 1 we provide a breakdown of the participation achieved by f tθ for682

these draws, and we note that no players are idle in this setting. The proportional amount683

of stake used as SPO pledge and delegation respectively varies by about 0.15. With regards684

to expenditure and decentralization, we turn to Figure 2, where we can see that in general685
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Figure 1 This Figure provides a breakdown of participation for the baseline parameter setting.
Each point in the left plot is one of the 496 draws of types in the Bayesian PNE that gave rise to ex
post SPO stability. The axes represent the relative proportion of stake that is used for delegation
and SPO pledges. As we can see, all points lie on a line indicative of the fact that for no draw do we
see idle agents. The right bar chart provides average values of absolute stake used by agents being
idle, delegators or SPOs respectively.

ε 0.005 0.1 1.0 5.0 10.0
Ex post SPO stable draws 498 497 499 495 499

Table 1 The number of ex post SPO stable draws (out of 500) for different ε values.

as delegation is sent to pools with higher pledge, the system achieves better decentralization,686

albeit at a higher expenditure.687

Impact of Idle Utility688

In this section we modulate the idle utility: ε ∈ {0.005, 0.1, 1.0, 5.0, 10.0} of all players in689

the game. In Table 1 we see the empirical frequency of ex post stable PNE as we modulate690

ε values, and we see that there is no significant difference even as ε increases multiple691

orders of magnitude. We do however see significant differences in terms of the participation,692

decentralization and expenditure of ex post PNE as we change idle utilities. With regards to693

participation, Figure 3 shows the changes in relative and absolute participation of agents694

as ε varies. As expected, with higher idle utilities, more agents prefer remaining idle over695

delegating. Moreover, this is in line with the fact that empirical frequencies for ex post696

stability do not change much, for if there is less delegation to go around, it can be easier697

to satisfy pool deficits and capacities. Of course, if too much delegation is idle, then there698

may not be enough delegation to satisfy pool deficits, and we may see a decrease in the699

empirical frequency of ex post SPO stability. Finally Figure 4 provides insight in terms of700

how decentralization and expenditure vary with ε. As expected, large values of ε result in701

lower expenditure, as the system needs to pay out less delegators. On the other hand, we also702

see that larger baseline utilities can increase decentralization, which also makes sense from703

the decreased delegation that occurs, as any dominating coalition of pools will necessarily704

have more skin in the game as they may have less external delegation.705

Impact of Reward Function706

In this section we modulate the separable reward function we use in the proper delegation707

game, ρ(λ, β) = a(λ) + b(λ)β′. In addition we fix idle utilities to be larger than baseline at708
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Figure 2 The top two plots provide insight regarding the spread of values the decentralization
and expenditure objectives can take for ex post PNE in the baseline parameter setting. The x-axis
for both of these plots corresponds to different representative PNE as per Algorithm 1, in which the
defining characteristic of a representative PNE is the reference pledge λ̄j , which is a proportional
value relative to the spread of SPO pledges. The bottom graph simultaneously plots the performance
of each representative ex post PNE in terms of decentralization and expenditure.

Figure 3 This Figure provides a breakdown of participation as ε varies in {0.005, 0.01, 0.02, 0.05}.
Different ε values to different colors and each point in the plot corresponds to draws of types that
gave rise to ex post SPO stability. The axes represent the relative proportion of stake that is used
for delegation and SPO pledges. The right bar chart provides average values of absolute stake used
by agents being idle, delegators or SPOs respectively for different threshold values.
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Figure 4 The top two plots provide insight regarding the spread of values the decentralization
and expenditure objectives can take for ex post PNE ε values vary in {0.005, 0.01, 0.02, 0.05}. The x
axis for both of these plots correspond to different representative PNE as per Algorithm 1, in which
the defining characteristic of a representative PNE is the reference pledge λ̄j , which is a proportional
value relative to the spread of SPO pledges. The bottom graph simultaneously plots the performance
of each representative ex post PNE in terms of decentralization and expenditure.
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g1 g2 g3 g4 g5 g6

Modulate a 497 498 495 497 489 449
Modulate b 497 498 496 495 496 499

Modulate (a, b) 496 496 496 497 499 493
Table 2 The number of ex post SPO stable draws (out of 500) for different settings of ρ.

ε = 5, where we’ve seen that agents can prefer to be idle over delegating. In this way we709

can glean insight regarding how different payment structures can foster participation. We710

modulate our payment scheme by varying, a, b and τ . Going forward we consider setting the711

constituent functions of ρ with combinations of the following functions:712

g1(λ) = 0.5λ713

g2(λ) = λ714

g3(λ) = 2λ715

g4(λ) = λ+ 0.005λ2
716

g5(λ) = λ+ 0.01λ2
717

g6(λ) = λ+ 0.05λ2
718

We modulate ρ in three different ways. First, we unilaterally modulate a ∈ {g1, . . . , g6},719

then we unilaterally modulate b ∈ {g1, . . . , g6}, and finally we jointly modulate (a, b) ∈720

{(g1, g1) . . . , (g6, g6)}. Empirical frequencies of ex post SPO stability are in Table 2.721

In Figure 5 we provide a detailed breakdown of how modulating a and b within ρ can722

impact the participation reached by the system at ex post PNE. First of all we see that723

unilaterally modulating a ∈ {g1, . . . , g6} (first row of Figure 5) accounts for much more724

change in participation over unilaterally modulating b ∈ {g1, . . . , g6} (second row of Figure725

5). Moreoever, when jointly modulating (a, b) ∈ {(g1, g1), . . . , (g6, g6)} (third row of Figure726

5), changes in participation closely resemble those made by individually modulating a,727

which suggest that for the functional values chosen, changes in a account for the majority728

of differences in participation. This phenomenon largely results from the fact that the a729

functions we explore with larger quadratic coefficients in λ not only pay SPOs more, but730

they also increase values of α(s, c), which in turn increase delegation rewards. Increased731

delegation rewards in turn incentivize more players into being delegators over being idle. At732

the same time, this comes at an added expense, as can be seen in Figure 6 where higher733

degree expressions of λ result in higher expenditure for the system. At the same time, these734

expensive ex post PNE also acheive large decentralization values, hence the system designer735

may find it beneficial to use such ρ functions if prioritizing participation and decentralization736

is more important than minimizing expenditure.737

Finally, we also modulate τ ∈ {100, 150, 200, 250}. Empirical frequencies of ex post SPO738

stability can be found in Table 3. Once more we use ε = 5 to glean information regarding739

participation tradeoffs for different τ values. In Figure 7 we provide a detailed breakdown740

of how modulating τ values can impact the participation reached by the system at ex post741

PNE. The most salient observation from the plots is that for the given choices of τ there742

is not much change in participation. This is due to the fact that for τ = 200 relatively743

few pools are saturated at representative ex post PNE, hence the relative changes in τ744

we explore do not largely change the representative ex post PNE (they still result in few745

pools being saturated). When delegation is closer to Cap(f), we may see a stronger impact746

in modulating τ , as larger values of τ necessarily increase the capacity of all pools, hence747

providing more leway to allocate delegation in ex post PNE. Figure 8 on the other hand748
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Figure 5 This Figure provides a breakdown of participation as a and b vary in {g1, . . . , g6}.
The first row corresponds to unilaterally modulating a, the second row corresponds to unilaterally
modulating b, and the third row corresponds to modulating (a, b) ∈ {(g1, g1), . . . , (g6, g6)}. For each
row, the left image is scatter plot where each point of a given color is an ex post PNE for a given ρ
function. For each row, the right image corresponds to the spread of absolute participation of each
type (idle, delegation, SPO) for a given ρ function.
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Figure 6 This Figure provides a breakdown of decentralization and expenditure for representative
ex post PNE as a and b vary in {g1, . . . , g6}. The first row corresponds to unilaterally modulating
a, the second row corresponds to unilaterally modulating b, and the third row corresponds to
modulating (a, b) ∈ {(g1, g1), . . . , (g6, g6)}. For each row, the left image plots decentralization and
the middle image expenditure for representative ex post PNE with increasing reference pledge
values. For a given row, the right image simultaneously plots decentralization and expenditure for
each representative ex post PNE. For each plot, different colors correspond to different ρ functions
generated by modulating a and b.
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τ 100 150 200 250
Ex post SPO stable draws 499 496 495 496

Table 3 The number of ex post SPO stable draws (out of 500) for different τ values.

Figure 7 This Figure provides a breakdown of participation for τ ∈ {100, 150, 200, 250}. τ values
correspond to different colors and each point in the plot corresponds to draws of types that gave
rise to ex post SPO stability. The axes represent the relative proportion of stake that is used for
delegation and SPO pledges. The right bar chart provides average values of absolute stake used by
agents being idle, delegators or SPOs respectively for different threshold values.

shows that our modulations in τ do not have a large impact on pledge, but they do have a749

large impact on expenditure. This once again boils down to the number of saturated pools750

at representative ex post PNE. Though there isn’t much of a relative difference in number of751

pools that are saturated (having a lower impact on decentralization), expenditure is more752

sensitive to number of pools saturated and hence we see a larger amount of pool rewards753

being given at representative ex post PNE.754

Impact of SPO Threshold in f tθ755

We modulate the threshold for SPO operation in the ex ante strategy f tθ. We consider756

values θ ∈ {10, 20, 30, 40, 50, 60} and Table 4 shows the number of ex post SPO stable draws757

for each given threshold value. The first observation we can make is that the empirical758

probability that f tθ be ex post SPO stable is decreasing in θ. This makes sense for two759

reasons; first of all, as θ increases, pivotal delegates become larger, which in turn increases r,760

the per-unit delegator rewards, thus leaving less rewards for SPOs, and hence decreasing their761

pool capacity. Second of all, an increased threshold also means that there is more delegation762

to go around, both from "large" delegates who lie just under the threshold, but also from763

agents who may have been idle, but with an increased r decide to delegate. All these factors764

contribute to decreased empirical probability of being ex post SPO stable. Figure 9 also765

provides us a more fine-grained perspective on how participation (and hence OP ) changes as766

a function of θ, where we see once more that increased thresholds decrease SPO operation767

and increase overall delegation.768

θ 10 20 30 40 50 60
Ex post SPO stable draws 500 500 496 478 428 344

Table 4 The number of ex post SPO stable draws (out of 500) for each threshold value of θ.
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Figure 8 The top two plots provide insight regarding the spread of values the decentralization
and expenditure objectives can take for ex post PNE when τ ∈ {100, 150, 200, 250}. The x-axis for
both of these plots corresponds to different representative PNE as per Algorithm 1, in which the
defining characteristic of a representative PNE is the reference pledge λ̄j , which is a proportional
value relative to the spread of SPO pledges. The bottom graph simultaneously plots the performance
of each representative ex post PNE in terms of decentralization and expenditure.

Figure 9 This Figure provides a breakdown of participation as thresholds vary from θ ∈
{10, 20, 30, 40, 50, 60}. θ values correspond to different colors and each point in the plot corresponds
to draws of types that gave rise to ex post SPO stability. The axes represent the relative proportion
of stake that is used for delegation and SPO pledges. As we can see, all points lie on a line indicative
of the fact that for no draw do we see idle agents. The right bar chart provides average values of
absolute stake used by agents being idle, delegators or SPOs respectively for different threshold
values.
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Figure 10 The top two plots provide insight regarding the spread of values the decentralization and
expenditure objectives can take for ex post PNE as thresholds vary from θ ∈ {10, 20, 30, 40, 50, 60}.
The x axis for both of these plots correspond to different representative PNE as per Algorithm 1,
in which the defining characteristic of a representative PNE is the reference pledge λ̄j , which is a
proportional value relative to the spread of SPO pledges. The bottom graph simultaneously plots
the performance of each representative ex post PNE in terms of decentralization and expenditure.

To gain insight with respect to how decentralization and expenditure are affected by769

θ, we turn to Figure 10. The first two images in the figure plot the decentralization and770

expenditure objectives respectively, as we consider representative PNE of larger reference771

pledges. Interestingly, we see that as θ increases, decentralization and expenditure in general772

increase, and moreover they become more constant as a function of representative ex post773

PNE reference pledge. Further observing the third image in the figure, we see that the774

performance of the θ = 10 threshold is better than others, but we recall that all these points775

represent ex post PNE, hence depending on the threshold exhibited by players in an ex post776

PNE, the system can exhibit a multitude of decentralization and expenditure objective values777

(along all θ values).778

Impact of Inequality of Pareto Distribution779

In this section we modulate γ from the Pareto distribution: γ ∈ {1.4, 1.45, 1.5, 1.55, 1.6}.780

Table 5 shows the number of ex post SPO stable draws for each given threshold value. Unlike781

when we modulate thresholds, we see that changes in γ within the range we explored did not782

have a significant impact on the empirical probability of being ex post SPO stable.783

We do see qualitatively similar behavior to modulating θ in terms of participation,784

decentralization, and expenditure. In terms of participation, Figure 11 shows that lower785

γ values result in more stake participating, but this is simply a reflection of the fact that786

the resulting Pareto distribution has a heavier tail, and hence the expected stake per player787
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γ 1.4 1.45 1.5 1.55 1.6
Ex post SPO stable draws 500 498 496 497 492

Table 5 The number of ex post SPO stable draws (out of 500) for each value of γ.

Figure 11 This Figure provides a breakdown of participation as inequality in the Pareto distri-
bution varies from γ ∈ {1.4, 1.45, 1.5, 1.55, 1.6}. γ values correspond to different colors and each
point in the plot corresponds to draws of types that gave rise to ex post SPO stability. The axes
represent the relative proportion of stake that is used for delegation and SPO pledges. As we can
see, all points lie on a line indicative of the fact that for no draw do we see idle agents. The right
bar chart provides average values of absolute stake used by agents being idle, delegators or SPOs
respectively for different threshold values.

increases, thus increasing the overall stake in the system. The left image from the figure788

though shows proportional participation, in which we see that proportionally as γ increases,789

there are less SPOs and more delegators. This is also in line with the intuition that larger790

γ values result in distribution with less "high-wealth" individuals, which under threshold791

strategies are precisely those who become SPOs.792

In Figure 12 we see that γ also has an impact on the overall spread of decentralization793

and expenditure objectives. The range of decentralization and expenditure values is lower794

than when modulating θ alone, but we see that γ = 1.6 results in more decentralization at795

lower costs. Given the fact that the relative participation breakdown has more delegates for796

higher γ values, this improved performance is most likely from the fact that overall there is797

less stake in the system in expectation for larger γ values, which in turn reduces expenditure798

and decentralization.799

Impact of SPO Cost800

We modulate the distribution of SPO costs in two different ways. First we consider settings801

of [cmin, cmax] that have the same mean of c = 0.5 of the baseline parameter settings. In802

addition to this, we consider [cmin, cmax] settings of a fixed width of 0.1, but with distinct803

means. Tables 6 and 7 respectively show the empirical frequency of the baseline threshold804

strategy being ex post SPO stable. The main observation we can draw from the tables is that805

changes in cos distribution do not have a significant impact for the base parametric setting.806

In Figures 13 and 15 we see the impact that varying the mean of [cmin, cmax] has on overall807

participation of the baseline threshold strategy. In addition, Figures 14 and 16 visualize the808

changes in decentralization and participation objectives at different representative ex post809

PNE for different SPO cost settings. We see that increasing SPO costs at this scale do not810

have much of an effect on decentralization, but they do marginally decrease expenditure.811
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Figure 12 The top two plots provide insight regarding the spread of values the decentral-
ization and expenditure objectives can take for ex post PNE as Pareto inequality varies from
γ ∈ {1.4, 1.45, 1.5, 1.55, 1.6}. The x axis for both of thesw plots correspond to different representative
PNE as per Algorithm 1, in which the defining characteristic of a representative PNE is the reference
pledge λ̄j , which is a proportional value relative to the spread of SPO pledges. The bottom graph
simultaneously plots the performance of each representative ex post PNE in terms of decentralization
and expenditure.

[cmin, cmax] [0.45,0.55] [0.4,0.6] [0.2,0.8]
Ex post SPO stable draws 500 496 500

Table 6 The number of ex post SPO stable draws (out of 500) for mean preserving [cmin, cmax]
of differing width.

[cmin, cmax] [0.35,0.45] [0.45,0.55] [0.55,0.66] [1.95,2.05] [4.95,5.05]
Ex post SPO stable draws 497 500 498 495 496
Table 7 The number of ex post SPO stable draws (out of 500) for [cmin, cmax] settings with

differing means.
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Figure 13 This Figure provides a breakdown of participation as SPO cost distributions vary
in width but preserve mean. Different widths correspond to different colors and each point in the
plot corresponds to draws of types that gave rise to ex post SPO stability. The axes represent
the relative proportion of stake that is used for delegation and SPO pledges. As we can see, all
points lie on a line indicative of the fact that for no draw do we see idle agents. The right bar chart
provides average values of absolute stake used by agents being idle, delegators or SPOs respectively
for different threshold values.

This latter point stems from the fact that larger SPO costs imply that pools have lower812

capacities, hence they are necessarily earning less pool rewards at saturation due to their813

smaller sizes.814

7 Conclusion815

In this work, we have provided a multi-objective framework for studying tradeoffs inherent in816

delegation systems for PoS cryptocurrencies. We began by providing a broad game theoretic817

framework for incentives in delegation systems, and successively narrowed down the game at818

hand to both represent key characteristics of existing PoS delegation systems, and also be819

tractable to study in a Bayesian framework. We provide key sufficient conditions for equilibria820

in the one-shot and Bayesian setting and use this characterization to study the potential821

performance of various payment schemes with respect to three key objectives: participation,822

decentralization and expenditure. The computational tools we provide give us insight with823

respect to the inherent tradeoffs system designers may face when attempting to maximize824

for these three natural objectives. In particular, our experimental results show scenarios in825

which modulating payment schemes can provide the flexibility needed to prioritize specific826

objectives amongst the 3, albeit at a potential detriment to the remaining objectives.827

With increased usage of delegation in PoS protocols, it will be important to conceptualize828

inherent tradeoffs faced by system designers, and techniques such as ours can inform a829

collective decision in terms of what delegation schemes to use depending on overall priorities.830

We believe our work is a preliminary foray into the tradeoffs that must necessarily be struck831

in delegation systems. Indeed there remain many future directions of work which can further832

elucidate system tradeoffs. For example, a natural thread would be to relax the constraints833

inherent in proper delegation games (for example in the ρ functions used), though this834

would necessitate a much more involved game-theoretic analysis. In addition, we made the835

simplifying assumption that players either choose to be idle, delegate or be SPOs. In practice,836

agents can split their stake into many of these roles, and it would be important to see what837

tradeoffs arise with an increased action space. Finally, as delegation schemes become more838

prevalent, it may very well be the case that multiple payment schemes interact within a839
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Figure 14 The top two plots provide insight regarding the spread of values the decentralization
and expenditure objectives can take for ex post PNE cost distributions vary in width while preserving
means. The x axis for both of these plots correspond to different representative PNE as per Algorithm
1, in which the defining characteristic of a representative PNE is the reference pledge λ̄j , which is a
proportional value relative to the spread of SPO pledges. The bottom graph simultaneously plots
the performance of each representative ex post PNE in terms of decentralization and expenditure.

Figure 15 This Figure provides a breakdown of participation as SPO cost distributions vary in
mean. Different means correspond to different colors and each point in the plot corresponds to draws
of types that gave rise to ex post SPO stability. The axes represent the relative proportion of stake
that is used for delegation and SPO pledges. As we can see, all points lie on a line indicative of the
fact that for no draw do we see idle agents. The right bar chart provides average values of absolute
stake used by agents being idle, delegators or SPOs respectively for different threshold values.
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Figure 16 The top two plots provide insight regarding the spread of values the decentralization
and expenditure objectives can take for ex post PNE cost distributions vary in mean. The x axis for
both of thesw plots correspond to different representative PNE as per Algorithm 1, in which the
defining characteristic of a representative PNE is the reference pledge λ̄j , which is a proportional
value relative to the spread of SPO pledges. The bottom graph simultaneously plots the performance
of each representative ex post PNE in terms of decentralization and expenditure.
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given system, in which case it would be important to understand the potential implications840

of players being able to choose which delegation schemes to participate in.841
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